next up previous contents
Next: A.3 散逸エネルギー Up: A.2 途中式 Previous: A.2.1 エネルギー保存式での計算の途中式


A.2.2 成分の質量保存式での計算の途中式

計算1

$\displaystyle \rho$ $\displaystyle \bm{v} \cdot \bm{\nabla} \omega_i + \rho \omega_i \bm{\nabla} \cdot \bm{v} + \omega_i \bm{v} \cdot \bm{\nabla}\rho$    
  $\displaystyle = \rho \bigg( u \dfrac{\partial \omega_i}{\partial x} + v \dfrac{...
... \dfrac{\partial \rho}{\partial y} + w \dfrac{\partial \rho}{\partial z} \bigg)$    
  $\displaystyle = \rho \omega_i \dfrac{\partial u}{\partial x} + \rho u \dfrac{\p...
...c{\partial \omega_i}{\partial z} + \omega_i w \dfrac{\partial \rho}{\partial z}$    
  $\displaystyle = \dfrac{\partial (\rho \omega_i u)}{\partial x} + \dfrac{\partial (\rho \omega_i v)}{\partial y} + \dfrac{\partial (\rho \omega_i w)}{\partial z}$    
  $\displaystyle = \left( \begin{array}{c} \dfrac{\partial }{\partial x} \vspace{....
...e{.5em} \\ \rho \omega_i v \vspace{.5em} \\ \rho \omega_i w \end{array} \right)$    
  $\displaystyle = \bm{\nabla} \cdot (\rho \omega_i \bm{v})$ (A.10)

計算2

$\displaystyle \rho$ $\displaystyle \bm{\nabla} \cdot \bm{\nabla} \omega_i + \bm{\nabla} \rho \cdot \bm{\nabla} \omega_i$    
  $\displaystyle = \rho \left( \begin{array}{c} \dfrac{\partial }{\partial x} \vsp...
...l y} \vspace{.5em} \\ \dfrac{\partial \omega_i}{\partial z} \end{array} \right)$    
  $\displaystyle = \dfrac{\partial \rho}{\partial x} \dfrac{\partial \omega_i}{\pa...
...l z} + \rho \dfrac{\partial }{\partial z} \dfrac{\partial \omega_i}{\partial z}$    
  $\displaystyle = \dfrac{\partial }{\partial x}\bigg( \rho \dfrac{\partial \omega...
...{\partial }{\partial z}\bigg( \rho \dfrac{\partial \omega_i}{\partial z} \bigg)$    
  $\displaystyle = \left( \begin{array}{c} \dfrac{\partial }{\partial x} \vspace{....
...\vspace{.5em} \\ \rho \dfrac{\partial \omega_i}{\partial z} \end{array} \right)$    
  $\displaystyle = \bm{\nabla} \cdot \big( \rho \bm{\nabla} \omega_i \big)$ (A.11)


next up previous contents
Next: A.3 散逸エネルギー Up: A.2 途中式 Previous: A.2.1 エネルギー保存式での計算の途中式


この図を含む文章の著作権は著者にあり、クリエイティブ・コモンズ 表示 - 非営利 - 改変禁止 3.0 非移植 ライセンスの下に公開する。